Membrane Recruitment of Aut7p in the Autophagy and Cytoplasm to Vacuole Targeting Pathways Requires Aut1p, Aut2p, and the Autophagy Conjugation Complex
نویسندگان
چکیده
Autophagy is a degradative pathway by which cells sequester nonessential, bulk cytosol into double-membrane vesicles (autophagosomes) and deliver them to the vacuole for recycling. Using this strategy, eukaryotic cells survive periods of nutritional starvation. Under nutrient-rich conditions, autophagy machinery is required for the delivery of a resident vacuolar hydrolase, aminopeptidase I, by the cytoplasm to vacuole targeting (Cvt) pathway. In both pathways, the vesicle formation process requires the function of the starvation-induced Aut7 protein, which is recruited from the cytosol to the forming Cvt vesicles and autophagosomes. The membrane binding of Aut7p represents an early step in vesicle formation. In this study, we identify several requirements for Aut7p membrane association. After synthesis in the cytosol, Aut7p is proteolytically cleaved in an Aut2p-dependent manner. While this novel processing event is essential for Aut7p membrane binding, Aut7p must undergo additional physical interactions with Aut1p and the autophagy (Apg) conjugation complex before recruitment to the membrane. Lack of these interactions results in a cytosolic distribution of Aut7p rather than localization to forming Cvt vesicles and autophagosomes. This study assigns a functional role for the Apg conjugation system as a mediator of Aut7p membrane recruitment. Further, we demonstrate that Aut1p, which physically interacts with components of the Apg conjugation complex and Aut7p, constitutes an additional factor required for Aut7p membrane recruitment. These findings define a series of steps that results in the modification of Aut7p and its subsequent binding to the sequestering transport vesicles of the autophagy and cytoplasm to vacuole targeting pathways.
منابع مشابه
Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole.
AUT2 and AUT7, two novel genes essential for autophagocytosis in the yeast Saccharomyces cerevisiae were isolated. AUT7 was identified as a low copy suppressor of autophagic defects in aut2-1 cells. Aut7p is a homologue of the rat microtubule-associated protein (MAP) light chain 3 (LC3). Aut2p and Aut7p interact physically. Aut7p is attached to microtubules via Aut2p, which interacts with tubul...
متن کاملAtg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy.
Delivery of proteins and organelles to the vacuole by autophagy and the cytoplasm to vacuole targeting (Cvt) pathway involves novel rearrangements of membrane resulting in the formation of vesicles that fuse with the vacuole. The mechanism of vesicle formation and the origin of the membrane are complex issues still to be resolved. Atg18 and Atg21 are proteins essential to vesicle formation and ...
متن کاملMechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane-bound vesicles termed autophagosomes. The conserved Atg5-Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5-Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited...
متن کاملQuo vadis? Interferon-inducible GTPases go to their target membranes via the LC3-conjugation system of autophagy
Many intracellular pathogens survive and replicate within vacuole-like structures in the cytoplasm. It has been unclear how the host immune system controls such pathogen-containing vacuoles. Interferon-inducible GTPases are dynamin-like GTPases that target the membranes of pathogen-containing vacuoles. Upon their oligomerization on the membrane, the vacuole structure disintegrates and the patho...
متن کاملFormation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast
We characterized Apg8/Aut7p essential for autophagy in yeast. Apg8p was transcriptionally upregulated in response to starvation and mostly existed as a protein bound to membrane under both growing and starvation conditions. Immunofluorescence microscopy revealed that the intracellular localization of Apg8p changed drastically after shift to starvation. Apg8p resided on unidentified tiny dot str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 152 شماره
صفحات -
تاریخ انتشار 2001